您现在的位置: 中国教师站 >> 试卷下载 >> 数学 >> 九年级数学试卷 >> 正文

人教版初三年级数学测试卷试题

来源:教师站 作者:佚名 2014/7/16 11:01:28

    试卷摘要: B型电脑的利润为4000元,销售20台A型和10台B型电脑的利润为3500元.(1)求每台A型电脑和B型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍。设购进A掀电脑x台,这100台电脑的销售总利润为y元。①求y与x的关系式;②该商店购进A型、B型各多少台,才能使销售利润最大?(3)实际进货时,厂家对A型电脑出厂价下调m(0解:(1)设每

3 ,

∵y=-50x+15000,-50<0,∴y随x的增大而减小.

∵x为正整数,∴当x=34最小时,y取最大值,此时100-x=66.

即商店购进A型电脑34台,B型电脑66台,才能使销售总利润最大………7分

(3)根据题意得y=(100+m)x+150(100-x),即y=(m-50)x+15000.

33 ≤x≤70.

①当0

∴当x =34时,y取得最大值.

即商店购进34台A型电脑和66台B型电脑才能获得最大利润;…………8分

②当m=50时,m-50=0,y=15000.

即商店购进A型电脑数最满足33 ≤x≤70的整数时,均获得最大利润;…9分

③当50

∴x=70时,y取得最大值.

即商店购进70台A型电脑和30台B型电脑才能获得最大利润.……………10分

22.(10分)(1)问题发现

如图1,△ACB和△DCE均为等边三角形,点A、D、E在同一直线上,连接BE

填空:(1)∠AEB的度数为    60      ;

(2)线段AD、BE之间的数量关系是   AD=BE   。

解:(1)①60;②AD=BE. …………………………………………2分

提示:(1)①可证△CDA≌△CEB,

∴∠CEB=∠CDA=1200,

又∠CED=600,

∴∠AEB=1200-600=600.

②可证△CDA≌△CEB,

∴AD=BE

(2)拓展探究

如图2,△ACB和△DCE均为等边三角形,∠ACB=∠DCE=900, 点A、D、E在同一直线上,CM为△DCE中DE边上的高,连接BE。请判断∠AEB的度数及线段CM、AE、BE之间的数量关系,并说明理由。

解:(2)∠AEB=900;AE=2CM+BE. …………………………4分

(注:若未给出本判断结果,但后续理由说明完全正确,不扣分)

理由:∵△ACB和△DCE均为等腰直角三角形,∠ACB =∠DCE= 900,

∴AC=BC, CD=CE, ∠ACB=∠DCB=∠DCE-∠DCB, 即∠ACD= ∠BCE

∴△ACD≌△BCE. ……………………………………………………6分

∴AD = BE, ∠BEC=∠ADC=1350.

∴∠AEB=∠BEC-∠CED=1350-450=900.……………………………7分

在等腰直角三角形DCE中,CM为斜边DE上的高,

∴CM= DM= ME,∴DE=2CM.

∴AE=DE+AD=2CM+BE……………………………………………………8分

(3)解决问题

如图3,在正方形ABCD中,CD= 。若点P满足PD=1,且∠BPD=900,请直接写出点A到BP的距离。

(3) 或 ………………………………………………………10分

【提示】PD =1,∠BPD=900,

∴BP是以点D为圆心、以1为半径的OD的切线,点P为切点.

第一种情况:如图①,过点A作AP的垂线,交BP于点P/,

可证△APD≌△AP/B,PD=P/B=1,

CD= ,∴BD=2,BP= ,

∴AM= PP/= (PB-BP/)=

第二种情况如图②,

可得AM PP/= (PB+BP/)=

完成了小学阶段的学习,进入紧张的初中阶段。这篇是中国教师站(cn-teacher.com)特地为大家整理的,欢迎阅读!

上一页  [1] [2] 

  • 上一套试卷:
  • 下一套试卷: 没有了
  • 版权声明:本站在建设中引用了互连网上的一些资源并对有明确来源的注明了出处,版权归原作者所有。如转载本站内容,请注明出处。